

Free Flight Performance Metrics What works?

Oct. 11, 2001

Dave Knorr

Overview

- Benefits of Performance Measurement
- Measuring Free Flight Technologies
- What works
 - In Terminal Operations Throughput and Efficiency
 - In Enroute Operations Restriction Removal
 - Tool Usage Data
- What is difficult
 - Safety
 - Enroute Throughput and Delay
 - Predictability and Flexibility
- OEP Metrics Development

Importance of Performance Measurement

Improved FAA Decision Making

NAS modernization decisions, e.g., FFP2

Analyses

ATM System
Performance Database
(Baseline and Post-implementation data)

Feedback to FAA facilities

Benefit Mechanisms

- When analyzing performance it is important to confirm that the <u>mechanisms</u> exist for providing the measured benefits:
 - Traffic handled differently than before
 - Improved situational awareness
 - Changes in holding patterns
 - More consistent spacing in arrival flows allow additional departures

URET Directs at ZME

Notes:

- Data Sampling: 2 days/week; between 14Z and 22Z
- URET 2-way processing began in July 99
- Includes any Lateral Amendment processed by Host

Focus on Performance Metrics

- What are performance metrics?
 - Customer driven quantitative measures of operational performance
 - Safety
 - ★ Capacity
 - ★ Delay/Efficiency
 - Predictability & Flexibility
 - System Productivity

FFP1 Ops Impact Evaluation Roadmap

Database Overview

FFP Metrics – Lessons Learned/What works

Terminal Area Performance Changes are measurable:

- Increased throughput during peaks indicates increased capacity
- Clear Objective Functions: Increased throughput, decreased flight times
- Normalization achievable (demand, conditions, etc.)
- Automated analyses possible

Analyzing Peak Terminal Throughput

- Focus on peaks where throughput is constrained by capacity
 - During slow traffic periods, there is little or no benefit with new tools
- Determine when system is stressed
 - Demand exceeds capacity
 - Desire to measure throughput not constrained by demand
- Determine criteria for minimum peak period
 - May depend on site

MSP Actual Arrival Peak-Times

(July 2000)

MSP Daily Cumulative Arrivals 12-18 March 2000

MSP Peak Period Cumulative Arrivals 16 March 2000

TMA at ZMP/MSP

Efficiency Measures

Flight altitude efficiency measurable:

- Delay distribution
- Capturing Static Restriction removal
- Flight time/distance changes
- Changes in holding

Metering: Analyzing Delay Distribution

- Looking for shift of "delay" to higher altitudes (further from TRACON) – CTAS Enroute
 - Continued focus on peak periods
 - Normalize for demand
 - Combine delay distribution with throughput results
- Use Series of Arcs around TRACON
- Consider impact on internal departures

SCT/LAX Airspace

To examine holding we found flying times and distances between rings around LAX

SCT/LAX Flying Distance Analysis

After CTAS: the distance between final arc and runway ~5 nmi less the standard deviation is less indicating a smoother flow

Removing Static Restrictions

- URET supports removal of static altitude restrictions
 - Automatic conflict detection for Controllers
 - Move to separating aircraft from aircraft
 - Move away from separating aircraft from airspace
- Facilities engage with Users on route/restriction priorities
- Benefit to users by allowing aircraft in transition to stay higher longer

Example: Lifting of Restrictions

Removed November 2000: CLE arrivals 83/87 at FL290

Altitude Restriction Removal

ZID Intra-facility restrictions removed

- · 19 restrictions removed; 1 being evaluated
- Savings to users approximately \$950,000 annually

History of Static Altitude Restriction Removal - ZID		
Restrictions Lifted or Modified	Estimated Annual Fuel Savings	Estimated Annual Savings @1.00
		per gal.
April – November 2000 6 Restrictions	234,350	\$234,350.00
March – April 2001 13 Restrictions	770,885	\$770,885.00
Plan to Lift May – June 2001 1 Restriction	23,716	\$23,716.00
Estimated Annual Savings	958,951 gal.	\$958,951.00

Usage Data

- Collecting "usage" data for tools a <u>must</u>
 - May require software within tool to collect
 - Provides link from tool to operational change
- Tool usage information can indicate "value" of the tool to the TMC's and controllers
 - Is the tool being used?
 - Are the advisories followed?

URET Directs at ZID

Notes:

- Direct Data Sampling: 2 days/week; between 13Z and 23Z
- URET 2-way processing began in July 99
- Includes any Lateral Amendment processed by Host

Distance Savings for Lateral Amendments

Notes:

- Data Sampling: 2 days/week
- ZID between 13Z and 23Z; ZME between 14Z and 22Z
- URET 2-way processing began in July 99
- **Includes any Lateral Amendment processed by Host**

ZID: September 01 Average TPs, Amendments, and Tracked Aircraft Count

Chart Interpretation

• For the entire ZID center, between 14Z and 16Z on days when URET was running; for the whole month of September, there were on average 146 TPs made per day, on average 122 of these TPs were amendments accepted by the Host. During that same 2 hour interval, on average there were 868 tracked flights in the center.

• URET hours: 146 hrs/wk

What's difficult....

- En Route Throughput
 - How to best measure?
 - Center throughput @ peak periods
 - Sector throughput @ peak periods
 - "Route" throughput @ peak periods
 - City Pair throughput @ peal periods
- En Route Efficiency (time & distance)
 - Normalizing for demand
 - Normalizing for wind
- En Route Improvements during bad weather
 - How to make comparable?

En Route Time & Distance Measurement

- Objection Function Not Consistent
 - Minimum time and/or distance must be assumed on aggregate level
- Results contain high level of noise
 - Trends may be masked
- Difficult to develop conclusive analyses
 - Analyze a variety of measures

EnRoute Distance

En Route Distance Trend for ZME During Good Weather

Average for Ten City Pairs, Weighted Equally

Actual-Planned Time in Center

Actual-Planned Distance in Center

Future: Additional Data Points - Diagram

